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« Footage from a wide range of sensor
platforms like security cameras and
UAVs in real-world environments.

2. Train a Cluster and Aggregate network!'l to predict a relative importance score for each feature using the
intermediate features. Features with undesirable attributes (e.g., the subject is looking away, poor visual fidelity)
will have lower importance than those with desirable ones (e.g., the subject is in focus and looking at the camera).
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* Challenges like extreme distance, 3. Compute a weighted sum of the probe features using the relative importance scores. This aggregated probe

camera pose, rpo.tion blur, occlusion, template py (1) incorporates all N probe features and (2) considers their image and feature space attributes.
and atmospheric interference.
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 Probe: Real-world video (e.g., taken in the field by a UAV) of a subject that we want to identify
 Probe Template py: Generated for each video using Top M Aggregation (below). Results
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by 10% over the
score-based baseline.
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« Probe Distance® is the cosine distance between the probe feature and its correct gallery template g;. However,
Motivation we do not know the correct subject y during evaluation, so these results are an upper bound for our next step.
« Score-based probe template aggregation works very well most of the time. However, it (1) limits the Next Ste S
number of features used to create the probe template and (2) assigns equal importance to each one. p
- Can we train a neural network to learn to aggregate a higher-fidelity probe template using image and 1. Train a neural network (i.e., CNNIQAI?) to predict the Probe Distance given a face chip, filling in the missing piece
feature space attributes of the probe features? that will allow us to use our Cluster and Aggregate network during evaluation.
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